Search results for "decay [resonance]"
showing 10 items of 195 documents
Neutron-rich isotopesTi54−57
1996
The neutron-rich isotopes $^{54\mathrm{\ensuremath{-}}57}\mathrm{Ti}$ and $^{58\mathrm{\ensuremath{-}}60}\mathrm{Cr}$ are produced by fragmentation of a 64.5 MeV/nucleon $^{65}\mathrm{Cu}^{26+}$ beam in a 90 mg/${\mathrm{cm}}^{2}$ $^{9}\mathrm{Be}$ target. Following particle identification by energy loss and time of flight, the radioactive decay was observed by \ensuremath{\beta} singles and \ensuremath{\beta}\ensuremath{\gamma}-coincidence measurements. The results obtained for $^{58\mathrm{\ensuremath{-}}60}\mathrm{Cr}$ are compared to previous results, whereas the decay of the $^{54\mathrm{\ensuremath{-}}57}\mathrm{Ti}$ isotopes is studied here. \ensuremath{\gamma}-ray intensities and en…
Spin-flip? ? decay of even-even deformed nuclei110Ru and112Ru
1991
Neutron-rich nuclides110Ru and112Ru produced in symmetric fission of238U by 20 MeV protons have been studied at the IGISOL facility by means ofβ-ray,γ-ray and conversion electron spectroscopy. A total of 12 and 6γ-transitions were observed in the decays of110Ru and112Ru, respectively. Multipolarities were determined for a few transitions. The beta decay half-life was determined to be 11.6±0.6 s for110Ru and 1.75±0.07 s for112Ru. As a side product, a new value of 2.1±0.3 s for theβ half-life of the112Rh 1+ state was obtained. The decay energy measured with the plastic scintillator was 2.81 ±0.05 MeV for110Ru and 4.52 ±0.08 MeV for112Ru. The beta decay schemes of110Ru and112Ru isotopes indica…
The $\beta$-delayed one- and two-proton emission of $^{27}$S
2001
In an experiment performed at the GANIL LISE3 facility, radioactive 27S isotopes have been produced by projectile fragmentation of a 95 AMeV 36Ar primary beam. After selection by means of the LISE3 separator, the isotope of interest was implanted in a silicon-detector telescope where its half-life ( T 1/2 = 15.5(15) ms) and its main decay branches were measured.
Decay properties of neutron deficient Kr isotopes
1974
The decay properties of the neutron deficient isotopes73–77Kr and73–76Br have been studied at the ISOLDE facility at CERN. The total decay energiesQ, as determined fromβ + singles orβ + -γ coincidence measurements, are compared with mass formulae.
Low-lying levels of201Hg from the decay of201Au
1972
The decay of 26.4-min201Au has been investigated using chemically separated sources and Ge(Li), Si(Li), plastic and Nal(Tl) detectors in different singles and coincidence arrangements. The β-disintegration energy was measured to be 1.27 ± 0.10 MeV. Thirteen γ-rays were observed to belong to this decay and the new levels at 543, 549.2, 552.8, 559.1, 605.7, 645.4, 732 and 1188 keV were established in201Hg, in addition to the three previously known excited states below 200 keV.
Levels in208Pb populated in the decay of208Tl(ThC″)
1969
Gamma rays in the disintegration of208Tl(ThC″) have been studied with Ge(Li)-Na I(Tl) anti-Compton and coincidence spectrometers. Several new transitions are reported most of which are placed in a decay scheme incorporating excited states in208Pb at 2,614.5, 3,197.6, 3,475.0, 3,708.3, 3,919.8, 3,960.9, 3,998.5, 4,125.3, 4,180.4, 4,296.1 and 4,480.0 keV. According to the present data, the recently reported intensity of 4.5±1.5% of beta groups feeding levels near 4.3 MeV is far too large.
Beta Decay Study of the Tz=−2 56Zn Nucleus and the Determination of the Half-Lives of a Few fp-shell Nuclei
2014
Abstract This paper concerns the experimental study of the β decay properties of few proton-rich fp -shell nuclei. The nuclei were produced at GANIL in fragmentation reactions, separated with the LISE spectrometer and stopped in an implantation detector surrounded by Ge detectors. The β -delayed gammas, β -delayed protons and the exotic β -delayed gamma-proton emission have been studied. Preliminary results are presented. The decay of the T z = − 2 nucleus 56 Zn has been studied in detail. Information from the β -delayed protons and β -delayed gammas has been used to deduce the decay scheme. The exotic beta-delayed gamma-proton decay has been observed for the first time in the fp -shell. Th…
AK=3two-quasiparticle isomer in98Sr
2002
The decay of on-line mass-separated ${}^{98}\mathrm{Rb}$ to ${}^{98}\mathrm{Sr}$ is studied by $\ensuremath{\gamma}$ spectroscopy. The revised decay scheme adds further evidence of the coexistence of very different shapes in ${}^{98}\mathrm{Sr}.$ A set of levels is proposed to originate from particle-hole pair excitations across the $Z=40$ spherical gap in analogy with ${}^{96}\mathrm{Sr}.$ A deformed $K=3$ band with probable even parity is built on a 7.1-ns isomer at 1838 keV. It is interpreted as a two-quasineutron excitation in accordance with a quantum Monte Carlo pairing calculation based on a deformed shell model. Configurations of the calculated lowest-lying two-quasiparticle levels …
Characterizing the atomic mass surface beyond the proton drip line viaα-decay measurements of theπs1/2ground state of165Re and theπh11/2isomer in161Ta
2012
The α-decay chains originating from the πs1/2 and πh11/2 states in 173Au have been investigated following fusion-evaporation reactions. Four generations of α radioactivities have been correlated with 173Aum leading to a measurement of the α decay of 161Tam. It has been found that the known α decay of 161Ta, which was previously associated with the decay of the ground state, is in fact the decay of an isomeric state. This work also reports on the first observation of prompt γ rays feeding the ground state of 173Au. This prompt γ radiation was used to aid the study of the α-decay chain originating from the πs1/2 state in 173Au. Three generations of α decays have been correlated with this stat…
β-decay half-life of70Kr: A bridge nuclide for therpprocess beyondA=70
2000
The -decay half-life of 70 Kr has been measured for the first time at the ISOLDE PSB Facility at CERN. Mass separated 70 Kr ions were produced by 1 GeV proton induced spallation reactions in a Nb foil. The measured half-life is 57(21) ms. This value is consistent with the half-life calculated assuming a pure Fermi decay, but is clearly lower than the value used in a recent rp-process reaction flow calculation. The result shows that the reaction flow via two-proton-capture of 68 Se is 2.5 times faster than previously calculated assuming an astrophysical temperature of 1.5 GK and a density of 10 6 g/cm 3 .